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Introduction

T HE transfer to geostationary orbit (GSO) is usually achieved
by placing the spacecraft initially in a geostationary transfer

orbit (GTO) with perigee altitude around 200 km and apogee around
36,000 km. The GTO orbital planes are inclined to the Earth equator
because of launch station locations. A large amount of propellant is
required to effect the plane change to achieve zero inclination as well
as to raise the perigee altitude to 36,000 km. These maneuvers make
the mission expensive, especially when the initial GTO inclinations
are high. Alternate approaches1−3 that advocate the use of lunar
gravity assist are discussed in the literature to reduce the fuel budget.

When a geocentric trajectory goes through the lunar gravity field,
it undergoes a plane change and gains or loses energy relative to
the Earth. This phenomenon can be judiciously used to raise the
perigee of the return trajectory, rotate the apsidal line, and change
the orbital inclination by choosing appropriate initial transfer orbit
characteristics relative to the Earth. Thus, the transfer of a space-
craft to GSO from GTO involves identification of appropriate initial
transfer trajectory characteristics that result in a low inclination and
GSO altitude as its perigee altitude after encounter with the moon.

In this Note, a numerical search technique that uses genetic al-
gorithms (GA) is formulated. Because of the extreme sensitivity
of the outgoing trajectory to the initial conditions, the performance
of the regular GA4 is found to be inadequate. A modified version
of GA, GA with adaptive bounds (GAAB),5 has successfully been
employed to overcome the problem of high sensitivity. In this ap-
proach, the parameter bounds of GA are modified during the search
process. The adaptation process helps generate precise lunar gravity
assist trajectory design. Furthermore, the influence of different prop-
agation force models on the initial conditions and on the achieved
target parameters is assessed. The significance of Earth’s second
zonal harmonic is established.

Problem Description
The transfer trajectory characteristics are described by six param-

eters: semimajor axis a, eccentricity e, inclination i , right ascension
of ascending node �, argument of perigee ω, and true anomaly ν.
All of these parameters must be obtained at the time of departure.
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From the consideration of minimum energy, the inclination and the
perigee point of GTO and transfer trajectory are taken to be the same.
This fixes the true anomaly to zero. Because the transfer trajectory
plane contains the moon, an equation relating � and the position of
the moon at the encounter time can be written as6,7

sin(αM − �) = tan δM/ tan i (1)

where αM and δM are right ascension and declination of the moon.
Also, the requirement of near zero inclination for the return trajec-
tory establishes the moon’s presence near the node at the time of
encounter with the moon. That is, δM = 0. Thus, the feasible range
for � is in the neighborhood of αM . Solutions can exist for various
� in the feasible region, which is equivalent to various approach
flight durations. With fixed � in this fashion, the unknown param-
eters that must be determined reduce to two, ha and ω, where ha is
the apogee altitude. The objective is to achieve GSO altitude and
inclination for the return orbit perigee altitude and inclination after
lunar encounter. The problem is solved using a numerical search
technique that uses numerical integration for propagation and GA
concepts for regulating the search.

Numerical Search Technique Using GA
Genetic algorithms require a range of values to choose from for

each of the unknown parameters. Fixing the range of values in the
neighborhood of appropriate values enables fast convergence. The
bounds for the argument of perigee altitude are fixed based on the ob-
servation that the transfer angle is around 180 deg and the perigee of
the transfer orbit must be near the Earth equator. There are two pos-
sible ranges for argument of perigee: 1) near 0 deg and 2) around
180 deg. The ranges for apogee are fixed in the neighborhood of
geocentric radial distance of the moon at the encounter time.

Fitness Function
The fitness value for each set of input parameters is given by

f = 1/(1 + obj) (2)

where

obj = [(h f − hGSO)/wh]2 + [(i f − iGSO)/wi ]
2 (3)

In Eq. (3), hGSO and iGSO are the desired GSO altitude and inclination
and h f and i f are the terminal perigee altitude and inclination of a
simulation. The terms in Eq. (3) have different units. Therefore, the
weight factors wh and wi are introduced to normalize the terms. The
proper choice of the weight factors enables uniform convergence,
ensuring desired error levels on both altitude and inclination. For this
study, a value of 500 is used for the ratio of the weights. Other values
will also work. With this value, and a convergence that achieves a
fitness value of 0.999999, the error on the achieved altitude is less
than 0.5 km and the error on the achieved inclination is less than
0.001 deg. The errors are different with other values.

GAAB
The initial bounds on input parameters are redefined within the

existing bounds after a certain number of generations (referred to
as iadapt) around the current best solution values of the parameters.
The steps involved in the redefinition of the bounds are as follows.

1) Pick the best solution value b of an input parameter when the
current generation is a multiple of iadapt.

500
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2) Compute hd = (h − l)/2, where h and l are the upper and lower
values of the bound, respectively.

3) If (b − l) is less than hd , then compute hd as (h − b)/2.
Otherwise, compute hd as (b − l)/2.

4) Compute the new upper and lower values of the bound as
h = (b + hd) and l = b − hd .

5) Repeat steps 1–4 for all of the input parameters.
After the redefinition of the bounds, a new encoded representation

of the population members must be computed with the new bounds.
The solution process further proceeds with the usual steps of GA
involving reproduction, crossover, and mutation.

Results and Discussion
An initial perigee altitude of 300 km and an initial inclination of

50 deg are considered for an illustrative case. A perigee altitude of
35,900 km and inclination of 1 deg are targets for the return orbit
after lunar encounter. The departure is assumed in January 2007. To
achieve near zero GSO inclination after lunar encounter, the decli-
nation of the moon during spacecraft’s close approach must be less
than the GSO inclination. From lunar ephemeris, the moon’s decli-
nation is between ±1 deg on the 9th and 23rd of January 2007. The
close approach must take place around these dates. In this example,
we consider 23 January as the lunar encounter day, and we fix the
departure epoch at 18 January, 2000, 0 hrs. The corresponding right
ascension of the moon is in the range of [−3–0 deg]. The parameter
� is varied in this region.

Precise Solution Using GAAB
The bounds were chosen as [360,000 420,000 km] for the

apogee altitude and [170 190 deg] for the argument of perigee.
The crossover and mutation probabilities are fixed as 0.8 and 0.01,
respectively.4 The population size is fixed at 40. For illustration, a

Table 1 Initial conditions of precise GAAB solution

Approach/total flight Impulses at departure/ Flyby
�, deg ha , km ω, deg duration, days for GSO, m/s altitude, km

−0.75 387,032.2 184.551 4.694/8.057 678.4/1090.1 8845.4
−1.0 386,724.6 184.134 4.646/7.980 678.3/1091.4 8496.7
−1.5 386,484.8 183.732 4.576/7.941 678.3/1089.3 8411.8
−2.0 386,238.2 183.148 4.493/7.844 678.2/1089.7 8047.1
−2.25 386,151.6 182.828 4.444/7.786 678.2/1090.3 7814.5

Fig. 1 Adaptation process of GAAB.

propagation force model consisting of nonspherical gravity models
of the Earth (10 × 0 field), the moon (9 × 0 field) and the sun’s point
mass effect is considered.

Figure 1 shows the adaptation process of GAAB. The width of
the bounds, initially wide, narrows as the solution process pro-
gresses. The GA process involves selection of discrete values from
the bounds for the initial parameters. In a wide bound, the val-
ues are sparsely selected and the trajectories are generated. These
trajectories are highly sensitive to the initial parameters. The adap-
tation process enables dense discretization in the reduced bounds
and overcomes the high-sensitivity problem.

The initial conditions of lunar gravity assist trajectories for a
right ascension of ascending node range from −0.75 to −2.25 deg
are given in Table 1. Approach flight duration ranges from 4.44 to
4.69 days. In all of the cases, the desired return orbit perigee altitude
and inclination are precisely achieved. If one considers an initial
transfer orbit of 300 × 35,900 km at an inclination of 50 deg, transfer
to GSO by usual methods requires a velocity addition of 2350 m/s.
When the lunar gravity assist as described earlier is used, the total
velocity requirement would be 1767 m/s, a reduction of 583 m/s.

Effect of Earth’s Oblateness
To assess the contribution of various components of the force

model, GAAB initial conditions are generated using the following
force models: case 1, spherical gravity fields for Earth and moon;
case 2, case 1 plus Earth’s second zonal harmonic; and case 3, non-
spherical gravity models for Earth and moon plus point mass sun.
The results are given in Table 2. These initial conditions are propa-
gated with the case 3 force model, referred to as the reference force
model. The resulting return orbits are also given in Table 2. Note the
change in the initial value of apogee. The initial argument of perigee
of the transfer trajectory does not change much due to force models.
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Table 2 Transfer trajectory parameters under different force
models and resulting targets on propagation

GAAB solution

Parameters Case 1 Case 2 Case 3

At departure
ha , km 375,697.1 387,051.7 386,724.6
ω, deg 184.3360 184.2866 184.1340

Return orbit on propagation with reference force model
Perigee altitude, km 342,259.7 33,822.2 35,900
Inclination, deg 15.54 0.44 1.0

The GAAB initial conditions of case 1 when propagated with the
reference force model results in a very large return orbit perigee
altitude of 342,259.7 kms. However, the GAAB solution of case
2 achieves a target perigee altitude of 33,822 kms. Furthermore,
the GAAB solution of case 3 is propagated without the effect of
Earth’s second zonal harmonic. The spacecraft experiences a ve-
locity change of about 2 m/s after a flight of 30 min. At this time,
the spacecraft reaches a radial distance of about 14,000 kms. The
velocity change due to other forces is less than 10−3 m/s. After this
distance, the influence of asphericity is negligible. However, the ini-
tial velocity change of 2 m/s leads to large deviations in the return
orbit (Table 2). It is clear that the spherical gravity models are not
sufficient for precise targeting and the major contribution is from
Earth’s second zonal harmonic. Thus, the orbit propagation model
of numerical search technique must include at least the second zonal
harmonic of the Earth.

Conclusions
The design characteristics of lunar gravity assist trajectories

are obtained using a numerical search technique and employing

a modified version of the GA, GAAB. The operation of the search
technique is demonstrated. The modified version of GA improves
the convergence and helps achieve the targets’ accurately. The effect
of different force models used in the design process is evaluated.
The second zonal harmonic of Earth’s gravity plays an important
role on the transfer trajectory and its achieved targets. It should be
considered in the propagation force model of any numerical search
process.
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